Chapter 8: An Introduction to Optical Atomic Spectrometry

- Optical Atomic Spectra
- Atomization Methods
- Sample Introduction Methods
- Optical Spectrometry as opposed to MS
- Optics are similar to Molecular Absorption and Fluorescence Spectrometry

Basics

- Generally solution samples (sometimes solids)
- Aspirate sample into flame or plasma
- Or heat sample to atomize
- Observe emission from excited state (AE)
- Or use light source to measure atomic absorption (AA)
- Or use light source to generate atomic fluorescence (AF)

Atomic spectra are line spectra

Some prominent lines in the atomic spectrum of mercury (Hg)

Other atomic spectra – many lines per spectra, lines are very narrow

Figure 8-1 Energy level diagrams for (a) atomic sodium and (b) magnesium(I) ion. Note the similarity in pattern of lines but not in actual wavelengths.

Absorption & emission lines come from discrete transitions

1	ത	C T	4	ω	r.s	<u> </u>
87 Fr	s0 52	37 Rb	<mark>ж</mark>	11 Na	3 Li	∎ [−] ⊳
88 Ra	56 Ba	JS 88	20 Ca	12 Mg	4 Be	ШĄ
* A ¢	57. ;; ≯La	$[\chi]_{60}$	21 Sc.	ШВ		
104 IRF	72 [H F]	40 Zr	22 TI	IYB	Of	P€
105 Ha	73 	Nb	23	ΥB		Ĥ.
106 106	74) (W)	42. Mo	24 .0r	ΥIB	le	2
107 107	75. .Re	43 (Tc)	25 Mn	УIIB		lic
108 108	76 . Os	44 Ru	26 .Fe		le	Ĥ
109 . 109 .	77 - - - - - - - - - - - -	45 	27 Co	- ≦ -	m	ച്
110 110	78 	46. . Pd	28 .Ni		en	Ы¢
	79 Au	47 Ag	29 Cu	в	St	()
	<mark>вн</mark> 108	48 Cd	30 (Z n)	IB		
	81 	49 n	31 Ga	13 A	5 B	≣A
	82 РЬ	S n	³² Ge	14 Si	ဂိ	IVA
	83 Bi	21 21	33 ÅS	15 P	7 N	۷A
	84 • Po	52 Te	34 Se	16 S	0 ~	۷IA
	85 At	53 1	35 Br	17 CI	٩	YIIA
	86 Rn	S4 Xe	36 Kr	18 A F	10 Ne	0 He

ត្តន៍	<u>–</u> ਭ	1 Tb Dy Ho	65 66 67 68 1

Figure 8-1 Energy level diagrams for (a) atomic sodium and (b) magnesium(I) ion. Note the similarity in pattern of lines but not in actual wavelengths.

Absorption & emission lines come from discrete transitions

Figure 8-5 Energy level diagram for thallium showing the source of two fluorescence lines.

Atomic line widths are important when considering spectral resolution, absorption experiments, etc.

Figure 8-6 Profile of an atomic line showing definition of the effective line width $\Delta \lambda_{1/2}$.

Doppler broadening occurs due to the observed compression and expansion of light waves as an atom moves toward or away from the radiation source

Other broadening effects include

- pressure or collisional broadening (10⁻⁴ Å)
- broadening from uncertainty effects
- electric & magnetic field effects
- Temperature effects from Boltzmann equation

$$\frac{N_{j}}{N_{o}} = \frac{P_{j}}{P_{o}} \exp\left(-\frac{E_{j}}{kT}\right)$$

- N = population of state P = statistical factor
- E_i = energy difference

- k = Boltzmann constant
- T = temp o & j signify ground & excited states

Figure 8-8 Molecular flame and flame absorption spectra for CaOH and Ba.

Hollow Cathode Lamp (HCL) and Electrodeless Discharge Lamp (EDL)

These lamps produce only the spectral output from the element of interest and therefore are ideally suited to atomic absorption experiments

The sample must be converted to its atomic state which can be done at high temp. in a flame, furnace, plasma, arc or spark

TABLE 8-1	Types of Atomizers Used for Atomic
	Spectroscopy

Type of Atomizer	Typical Atomization Temperature, °C
Flame	1700–3150
Electrothermal vaporization (ETV)	1200–3000
Inductively coupled argon plasma (ICP)	4000–6000
Direct current argon plasma (DCP)	4000-6000
Microwave-induced argon plasma (MIP)	2000–3000
Glow discharge plasma (GD)	Nonthermal
Electric arc	4000-5000
Electric spark	40,000 (?)

TABLE 8-2 Methods of Sample Introduction in Atomic Spectroscopy

Method Type of Sample Pneumatic nebulization Solution or slurry Solution Ultrasonic nebulization Solid, liquid, solution Electrothermal vaporization Hydride generation Solution of certain elements Direct insertion Solid, powder Laser ablation Solid, metal Spark or arc ablation Conducting solid Conducting solid Glow discharge sputtering

Introducing the sample to the high temperature source can be tricky

Pneumatic nebulizers a) concentric tube b) cross-flow

- c) fritted disk
 -) Babington

Sample introduction for solutions:

- 1) Pneumatic nebulizers
- 2) Ultrasonic nebulizers
- 3) Electrothermal vaporizers
- 4) Hydride generation
- $3 BH_4^- + 3 H^+ + 4 H_3 AsO_3 \rightarrow$

 $3 H_3 BO_3 + 4 AsH_3 + 3 H_2 O$

5) Cold vapor generation

 $Hg^{2+} + Sn^{2+} \rightarrow Hg^{\circ} + Sn^{4+}$

Solid sample introduction:

- 1) Laser ablation zap sample with laser and sweep atoms into flame/plasma
- 2) Direct sample insertion place sample directly in atomizer (e.g. furnace)
- 3) Electrothermal atomizers electrically heat graphite or tantalum boat
- 4) Arc/Spark ablation coat sample on electrode or place in electrode well or cup
- 5) Glow discharge technique see p 204

Chapter 9: Atomic Absorption & Atomic Fluorescence Spectrometry

- Sample Atomization
- Atomic Absorption (AA)
- Atomic Fluorescence (AF)
- Both AA and AF require a light source
- Like Molecular Absorption & Fluorescence, in AA high intensity is NOT required, in AF high intensity results in greater sensitivity

Figure 9-1 Processes occurring during atomization.

Fuel	Oxidant	Temperatures, °C	Maximum Burning Velocity (cm s ⁻¹)
Natural gas	Air	1700-1900	39-43
Natural gas	Oxygen	2700-2800	370-390
Hydrogen	Air	2000-2100	300-440
Hydrogen	Oxygen	2550-2700	900–1400
Acetylene	Air	2100-2400	158-266
Acetylene	Oxygen	3050-3150	1100-2480
Acetylene	Nitrous oxide	2600-2800	285

TABLE 9-1 Properties of FlamesThey're HOT !

AA Slot Burner and Flame

Division, Palo Alto, CA.) ing are 20 and 60 s, respectively. (Courtesy of Varian Instrument 2 µL of canned orange juice. The times for drying and ashequipped with an electrothermal atomizer. The sample was Figure 9-7 Typical output from a spectrophotometer

	Ionization	1 p = 10	Fraction Ionized at ti and Tem ⁻⁴ atm	the Indicated Pressure perature $p = 10^{-6}$	5 atm
Element	eV	2000 K	3500 K	2000 K	3500 K
Cs	3.893	0.01	0.86	0.11	>0.99
Rb	4.176	0.004	0.74	0.04	>0.99
K	4.339	0.003	0.66	0.03	0.99
Na	5.138	0.0003	0.26	0.003	0.90
Li	5.390	0.0001	0.18	0.001	0.82
Ba	5.210	0.0006	0.41	0.006	0.95
Sr	5.692	0.0001	0.21	0.001	0.87
Ca	6.111	3×10^{-5}	0.11	0.0003	0.67
Mg	7.644	4×10^{-7}	0.01	4×10^{-6}	0.09

1965. Reprinted with permission of John Wiley & Sons, Inc. 0, Contract (Name and he was

1967 American Chemical Society.) A. Bowman and J. B. Willis, Anal. Chem., 1967, 39, 1220. Copyright

Element	AAS‡ Flame	AAS§ Electrothermal	AES‡ Flame	AES‡ ICP	AFS‡ Flame
AI	30	0.005	S	2	S
As	100	0.02	0.0005	40	100
Ca	1	0.02	0.1	0.02	0.001
Cd	1	0.0001	800	2	0.01
Cr	3	0.01	4	0.3	4
Cu	. 2	0.002	10	0.1	1
Fe	S	0.005	30	0.3	8
Hg	500	0.1	0.0004	1	20
Mg	0.1	0.00002	S	0.05	1
Mn	2	0.0002	S	0.06	2
Mo	30	0.005	100	0.2	60
Na	2	0.0002	0.1	. 0.2	I
Ni	5	0.02	20	0.4	3
Рь	10	0.002	100	2	10
Sn	20	0.1	300	30	50
V	20	0.1	10	0.2	70
Zn	2	0.00005	0.0005	2	0.02