Two planes on merging routes are:
-- traveling at the same speed.
An alternate route is available.

LineUp With Math ${ }^{\text {tm }}$
 Math-Based Decisions in Air Traffic Control for Grades 5-9

Problem Set B

Resolving 2-Plane Traffic Conflicts by Changing Route Teacher Guide with Answer Sheets

In this Problem Set, students will determine whether two planes traveling on different merging routes will line up with proper spacing at MOD (the last intersection before the planes leave the airspace sector). If the spacing is not adequate, students will analyze an alternate route for one plane.

The planes are traveling at the same altitude and the same constant (fixed) speeds.
Of all the LineUp With Math ${ }^{\text {TM }}$ Problem Sets, this is the simplest. There are only two planes and a simple route change will solve each problem. A speed change is not required to resolve a spacing conflict.

Each problem can be explored with the interactive Air Traffic Control (ATC) Simulator. Three of the problems can be more closely examined with Student Workbook B (print-based). The Workbook provides a structured learning environment for exploring the problems with paper-and-pencil worksheets that introduce students to pertinent air traffic control concepts as well as problem analysis and solution methods.

Students will:

- Analyze a sector diagram to identify a spacing conflict between two planes, each traveling at the same speed.
- Resolve the conflict by changing the route for one plane.

Before attempting the current Problem Set, it is strongly recommended that students complete Problem Set A that introduces essential air traffic control vocabulary, units, and representations.

- ATC Simulator (web-based)
- Student Workbook B (print-based)

Teachers access the materials by visiting the LineUp With Math ${ }^{\mathrm{TM}}$ website:
http://www.smartskies.nasa.gov/lineup

A separate student website gives students easy access to the Simulator and supporting materials (not to the answers and solutions on the teacher website):

> http://www.atcsim.nasa.gov

ATC Simulator

A complete description of the ATC Simulator is contained in the Educator Guide for LineUp With Math ${ }^{\mathrm{TM}}$.

For a Simulator user guide and an animated tutorial, visit the LineUp With Math ${ }^{\mathrm{TM}}$ website.

Interactive Air Traffic Control Simulator

Students first explore Problem Set B with the interactive ATC Simulator. Each problem features a 2-plane conflict that can be resolved by a route change.

The Simulator problems for Problem Set B are:

$$
2-1 * ; \quad 2-2 * ; \quad 2-3^{*} ; \quad 2-9 ; \quad 2-10
$$

Problems with an asterisk (*) are supported by worksheets in Student Workbook B.

For a complete set of solutions to all Problem Set B Simulator problems, see Appendix I of this document.

For a discussion of the key points associated with the first three Simulator problems, see the worksheet notes in the following Student Workbook section of this document.

Student Workbook

It is recommended that you have a copy of Student
Workbook B open while you read these notes.

The worksheet title is the same as the associated Simulator problem.

In the sector diagram, each route flows only towards MOD. E.g., a plane may fly from MINAH to OAL, but cannot fly from OAL to MINAH.
$\underline{\text { Simulator Problem }}$
2-1*
2-2*
2-3*

Worksheet Title

Problem 2-1
Problem 2-2
Problem 2-3
-

Each problem features a spacing conflict with different starting conditions. As students progress through the worksheets, they likely will require less guidance and structure, and the subsequent worksheets reflect this.

For a complete set of answers to each worksheet, see Appendix II of this document.

For each worksheet, the key points are briefly described as follows.

Worksheet: Problem 2-1

The Student Workbook consists of three worksheets, one for each of the three featured Simulator problems listed below.

- Each plane starts at a different distance from MOD. The difference between the planes' starting distance from MOD represents a "headstart" for the closer plane.
- Since the planes are traveling at the same speed, the closer plane maintains its "headstart".
- With the new route, the planes' spacing at MOD will be greater than the Ideal Spacing. A route change may provide additional spacing, but does not guarantee Ideal Spacing. In a later Workbook, students will have the opportunity to change plane speeds as well as the route, and thus achieve Ideal Spacing exactly.

Worksheet: Problem 2-2

- This problem is similar to Problem 2-1, but students work more independently, with less guidance and structure.

Worksheet: Problem 2-3

- This problem is similar to Problems 2-1 and 2-2. However, in this problem, students are expected to analyze and identify the spacing conflict on their own. Minimal structure is provided to guide students to a solution.

Answer Sheets

For a set of solutions to all Simulator problems, visit the LineUp With Math ${ }^{\text {TM }}$ website.

Answer sheets for each worksheet in Student Workbook B can be found in Appendix II of this document.

APPENDIX I

Air Traffic Control Simulator

Simulator Solutions for Problem Set B

$$
2-1^{*}, 2-2^{*}, 2-3^{*}, 2-9,2-10
$$

Problems with an asterisk (*) are supported

 by worksheets in Student Workbook B
Starting Conditions:

Sector 33

00:00

Plane	From	Through	To	Distance	Speed
AAL12	MINAH	OAL	MOD	33	600
DAL88	TPH	OAL	MOD	34	600

- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: DAL88 will arrive at OAL 1 nautical mile behind AAL12.
- AAL12 can take the shortcut to shorten its distance of travel by

Projected Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	AAL12	33	$\gg 1$
2nd	DAL88	34	>1

Initial:

AAL12 DAL88

Solution:

Sector 33

- AAL12 - Reroute direct to MOD to move forward 3 nautical miles. Spacing at MOD is 4 nautical miles. This is greater than 3 nautical miles Ideal Spacing.
- Target Time - 3 minutes and 24 seconds.

Starting Conditions:

Sector 33

$00: 00$

Plane	From	Through	To	Distance	Speed
DAL88	TPH	OAL	MOD	35	600
UAL74	LIDAT		MOD	35	600

- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: DAL88 AND UAL74 will arrive at MOD at the same time.
- UAL74 can take the long route through OAL to extend its

Projected Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	DAL88	35	$\gg 0$
1st	UAL74	35	

Initial:

Solution:

- UAL74 - Reroute through OAL to fall back 3 nautical miles.

Sector 33

- Target Time - 3 minutes and 48 seconds.

Starting Conditions:

Sector 33

00:00

Plane	From	Through	To	Distance	Speed
AAL12	MINAH	OAL	MOD	35	600
DAL88	LIDAT		MOD	35	600

- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: DAL88 AND AAL12 will arrive at MOD at the same time.
- AAL12 can take the shortcut to shorten its travel distance by

Projected Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	AAL12	35	>0
1st	DAL88	35	

Initial:

Solution:

Sector 33

- AAL12 - Reroute direct to MOD to move forward 3 nautical miles.
- Target Time - 3 minutes and 30 seconds.

Starting Conditions:

Sector 33

$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH	OAL	MOD	33	600
DAL88	TPH	OAL	MOD	33	600

- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: AAL12 AND DAL88 will arrive at OAL at the same time.
- Send AAL12 on the shortcut to shorten its travel distance by

Projected Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	AAL12	33	\gg
1st	DAL88	33	

Solution:

Sector 33

- AAL12 - Reroute direct to MOD to move forward by 3 nautical miles.
- Target Time - 3 minutes and 18 seconds.

Starting Conditions:

Sector 33

00:00

Plane	From	Through	To	Distance	Speed
DAL88	TPH	OAL	MOD	35	600
UAL74	LIDAT		MOD	35	600

- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: DAL88 AND UAL74 will arrive at MOD at the same time.
- UAL74 can take the long route through OAL to lengthen its

Projected Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	DAL88	35	\gg
1st	UAL74	35	

Initial:

Solution:

Sector 33

- UAL74 - Reroute through OAL to fall back by 3 nautical miles.
- Target Time -3 minutes and 48 seconds.

Math-Based Decisions in Air Traffic Control

Student Workbook B

Appendix II

- Resolving Air Traffic Conflicts by Changing Route Workbook Answeri, $2,2.23$
- Simulator at: www.atcsim.nasa.gov

Investigator: \qquad
\qquad

Ideal Spacing at MOD $=3$ Nmiles

$\$ 0$ Understand the Situation

Which plane is closer to OAL? (This plane has a "headstart".)

Which plane will arrive first at OAL?

$$
21-20=1
$$

$\begin{array}{ll}4 \text { AL12 } & \text { "Headstart" }=1 \\ \text { AAL12 }\end{array}$ When that plane arrives at OAL, the spacing will be X the same as \square different from the "headstart".

Check Separation

Will the spacing at OAL be at least the minimum separation of 2 nautical miles?

How much extra spacing is needed to have the ideal spacing of 3 nautical miles?

What could the controller do to achieve at least ideal spacing?
\qquad

\sum^{2} Fix the Conflict

- One way to try to achieve the ideal spacing is to REROUTE AAL12 directly from MINAH to MOD as shown above.

Circle the intersection where the new AAL12 route meets the DAL88 route.

		34-30 = 4		
10 Which plane now has a "headstart"	AAL12	New "Headstart" =	4	nautical miles
11 Which plane will arrive first?	AAL12	New Spacing =	4	nautical miles
12 Why does the new route provide additional spacing?				
With the new route to MOD, AAL12 now has a 4 nautical mile headstart				

Check New Separation

X Yes \square No If No , try again!

Does the new spacing equal the ideal spacing of 3 nautical miles? \square Yes

X No

Route changes don't always give Ideal Spacing!

End of Worksheet

Smart

Fill in the table to determine if the 2 planes have the ideal spacing where the routes meet.

Where do the
routes meet?

Nmiles
:---:
MOD, Nmi
:---:
MOD Ideal?
:---:
for Ideal Spacing (3 Nmi)

$35-35=0$

Plane:
Route change:
то: OAL
To:

CAUTION Be sure to mark out the old route and darken the new route.
This is so you won't use the wrong route by mistake when you check your solution.
To check your new route, fill in the following table.

Where do the routes meet?	Lead Plane?	Headstart Nmiles	Spacing at OAL, Nmi	Spacing at MOD, Nmi	Is Spacing at MOD Ideal?
OAL DAL88 $\boxed{3}$ $\boxed{3}$ $\boxed{3}$ Yes					

25-22 = 3
If Yes, Congratulations! If No, try again!
\qquad

Ideal Spacing at MOD $=3$ Nmiles

What is the spacing at MOD?
0 natical miles $35-35=0$
The route lengths and the speeds are the same (35
nautical miles).
Does the spacing equal the ideal? \square Yes X No

If the spacing is NOT the ideal spacing, enter the flight plan change you will use to solve the problem.
Plane: AAL12 New Route: MINAH to MOD

(If send UAL74 the long way, both planes will be delayed.)

CAUTION Be sure to mark out the old route and darken the new route.

This is so you won't use the wrong route by mistake when you check your solution.

TheAAL12 route to MOD is now 3 nautical miles

Is the new spacing now ideal (3 nautical miles)?
X YesNo
If Yes, Congratulations! If No, try again!

End of Worksheet

Smart

